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Highlights

 Proposed a decomposed evolutionary algorithm for learning fuzzy cognitive map models;
 Applied the proposed method to infer causal networks from gene expression time series;
 The algorithm is demonstrated to learn fuzzy cognitive maps with 300 nodes, while the 

accuracy of most existing methods is not satisfactory even for fuzzy cognitive maps with 
40 nodes;

 Compared four different stochastic optimization algorithms for learning fuzzy cognitive 
maps, including genetic algorithm, ant colony optimization, differential evolution and 
particle swarm optimization.
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ABSTRACT

Fuzzy cognitive maps have been widely used as abstract models for complex networks. 
Traditional ways to construct fuzzy cognitive maps rely on domain knowledge. In this paper, we 
propose to use fuzzy cognitive map learning algorithms to discover domain knowledge in the 
form of causal networks from data. More specifically, we propose to infer gene regulatory 
networks from gene expression data. Furthermore, a new efficient fuzzy cognitive map learning 
algorithm based on a decomposed genetic algorithm is developed to learn large scale networks. 
In the proposed algorithm, the simulation error is used as the objective function, while the model 
error is expected to be minimized. Experiments are performed to explore the feasibility of this 
approach. The high accuracy of the generated models and the approximate correlation between 
simulation errors and model errors suggest that it is possible to discover causal networks using 
fuzzy cognitive map learning. We also compared the proposed algorithm with ant colony 
optimization, differential evolution, and particle swarm optimization in a decomposed 
framework. Comparison results reveal the advantage of the decomposed genetic algorithm on 
datasets with small data volumes, large network scales, or the presence of noise.
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1   INTRODUCTION

Fuzzy Cognitive Map (FCM) is a graph model that visualizes expert knowledge as a 
weighted directed graph [1]. The nodes in FCMs represent the concepts to be modeled, and the 
signed weights between the nodes represent the strength of causal relations. Traditionally, the 
initial weights are assigned by domain experts. In addition, Hebbian-based learning algorithms 
[2-4] can be used to resolve conflicts among experts and to improve the accuracy of the weights. 
The resulting FCM model can be used to study the properties of the complex system under 
investigation.

There are several advantages in applying FCMs to model complex systems. Because FCMs 
do not have hidden nodes, the dynamics of the system can be interpreted easily in terms of 
interactions among a set of well-defined, real-world concepts. Domain experts can also use 
linguistic terms to define the weights, and the simulation results can thus be easily interpreted in 
linguistic terms. Furthermore, FCMs can also generate rich dynamics although the models are 
simple [5]. Due to these advantages, FCMs have been applied to study a wide variety of complex 
systems, such as, engineering control systems [6-8], on-line design of fuzzy controllers [9-11], 
situation-aware computing [12], medical decision support systems [13-15], educations [16], and 
ecosystems [17]. FCMs have also been used together with other techniques to model complex 
systems. Examples include cellular automata [18], gray system theory [19], and petri nets [20].

In spite of the wide application areas of FCMs, to the best of our knowledge, there is no 
report on applying FCMs to the causal inference problems. Different from the other applications 
of FCMs where domain knowledge is applied to construct FCMs, the application of FCMs to 
causal inference may help discover new domain knowledge.

Causal inference is an important problem which mainly focuses on discovering plausible 
causal relations between the concepts or nodes. An example of causal inference problem is the 
reverse engineering of gene regulatory networks (GRNs). GRNs consist of genes and their 
interaction relations. The expression level of a gene may cause an increase (activation) or 
decrease (repression) in the expression level of another gene. These causal relations among the 
genes are critical to understanding the functions of the cells [21]. However, many of these 
relations are unknown to domain experts and therefore causal inference algorithms are needed to 
discover these relations.

Although many methods have been developed to infer GRNs from gene expression data [22], 
we believe FCMs could be used to better represent and discover the relations in GRNs. The most 
widely used method in the literature include Boolean networks [23, 24], Bayesian networks [25], 
dynamic Bayesian networks [26], ordinary differential equations [27, 28], and correlation and 
mutual information based methods [29, 30]. These methods represent the gene expression levels 
using either Boolean values or scaled real values. Applying FCMs to GRN inference problems 
could provide a good balance between the Boolean and real value representation methods and 
could potentially outperform the existing methods.
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In this paper, we propose to apply FCM learning algorithms to construct GRNs from data. 
Although there are existing FCM learning algorithms that could be applied to construct FCMs 
from data, there are several concerns need to be addressed, including whether the existing FCM 
learning framework could be applied to causal inference problem, which algorithm performs the 
best for this particular problem, and how to learn FCMs with a large number of nodes. These 
three concerns are further discussed in the following.

(1) The applicability of FCM learning algorithms to the reverse engineering of complex 
causal networks. Research advances in FCM learning algorithms provide the opportunity to 
discover knowledge from historical data; however, to the best of our knowledge, there is no 
report on the reverse engineering of causal networks using FCMs. Most of the studies apply data-
driven FCM learning algorithms to problems focused on minimizing the difference between an 
output sequence and historical data, i.e., the simulation error [31-33]. However, reverse 
engineering of causal networks requires an accurate estimation of the weights, i.e., minimizing 
the model error, which is not directly related to simulation error. Usually, there are many 
different FCMs with the same or very similar simulation results. The implications of this for the 
discovery of causal networks are not well-understood. Several studies have assessed the accuracy 
of weights in the learned FCMs [34, 35]. However, the accuracy of the FCMs is relatively low 
and it is unknown if there is a significant correlation between the accuracy of simulation result 
and the accuracy of the structures and weights of the FCMs. The first aim of this paper is to 
evaluate the FCM learning algorithms using structure-based performance measures and 
determine if simulation accuracy can be used as a reliable objective function in reverse 
engineering applications.

(2) The choice of optimization algorithms. Although a large number of meta-heuristic FCM 
learning algorithms exist and several reviews [33, 36] can be found in the literature, there are 
very few comprehensive comparisons [37]. Furthermore, the best algorithm for one application 
area may not be the best for another, including the application and objective function used in this 
paper. The second aim of this paper is to compare the performance of several widely used 
algorithms, including an ant colony optimization algorithm for real parameters (ACOR) [38], a 
differential evolution (DE) algorithm [39], a particle swarm optimization (PSO) algorithm [40, 
41], and a variant of real-coded genetic algorithm (RCGA) proposed in this paper.

TABLE I
SIZE OF FCMS (MAXIMUM NUMBER OF NODES) IN PREVIOUS STUDIES

Reference Year Algorithm Size

Koulouriotis et al. [42] 2001 Evolutionary strategies 6
Parsopoulos et al. [43] 2003 PSO 5
Papageorgiou et al. [44] 2005 Hybrid DE and nonlinear HL 8
Papageorgiou et al. [45] 2006 Active HL / nonlinear HL 5
Ghazanfari et al. [46] 2007 Hybrid RCGA and SA 15
Stach et al. [47] 2007 Parallel RCGA 80
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Stach et al. [48] 2008 Data-driven nonlinear  HL 20
Alizadeh et al. [49] 2009 Chaotic SA 14
Petalas et al. [37] 2009 Memetic PSO 18
Stach et al. [32] 2010 Divide and conquer RCGA 40
Baykasoglu et al. [50] 2011 Extended great deluge 6
Zhang et al. [51] 2011 Gradient residual algorithm 7
Madeiro et al. [52] 2012 RCGA with gradient search 38
Stach et al. [34] 2012 Sparse RCGA 40
Chen et al. [35] 2012 ACO 40
Chen et al. [53] 2012 Decomposed ACOR 100
Huang et al. [54] 2013 Extreme learning machine 6
Yesil et al. [55] 2013 Artificial bee colony 13
Gregor et al. [56] 2013 Gradient-based search 20
Kannappan et al. [57] 2013 Artificial immune systems 26
Napoles et al. [58] 2014 Hybrid PSO and ACO 25
This paper - Decomposed RCGA with tournament 

selection
300

ACO, ant colony optimization; ACOR, ACO for real parameters; DE, differential evolution; HL, Hebbian 
learning; PSO, particle swarm optimization; RCGA, real-coded genetic algorithm; SA, simulated annealing.

(3) The applicability of the meta-heuristic algorithms to large-scale FCM learning problems. 
It is difficult to learn large scale FCMs because the search space grows exponentially with the 
number of nodes [35]. Most learning algorithms have been applied to FCMs with a small number 
of nodes as summarized in Table I. Only a few studies have tried to learn large scale FCMs. For 
example, Stach et al. proposed four versions of RCGA to learn FCMs with 40 nodes [32, 34, 59]
and 80 nodes [47] respectively. Chen et al. [53] applied an ant colony optimization algorithm to 
learn FCMs with 100 nodes, but the accuracy was relatively low. For real-world problems, such 
as gene regulatory network (GRN) inference, there could be more than 100 nodes. The third aim
of this paper is thus to propose a new FCM learning algorithm based on RCGA with tournament 
selection [60] and a decomposed problem formulation [53]. The proposed algorithm is applied to 
large scale FCMs with up to 300 nodes.

The rest of the paper is organized as follows. Section 2 introduces the necessary background 
on FCMs, data-driven FCM learning algorithms and the GRN inference problem. Section 3 
provides a description of the proposed FCM learning algorithm based on RCGA. Section 4 
presents the experimental design. Section 5 presents the results and Section 6 summarizes the 
main contributions of this paper.

2   BACKGROUND

2.1    Fuzzy Cognitive Maps
Fuzzy cognitive maps (FCMs) were proposed by Kosko as a generalization of cognitive 

maps [1]. An FCM is a graph with NN nodes. Every node represents a concept in the system 
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under investigation. Values ranging [0,1] are assigned to the nodes to represent the status (or 
activation degrees in FCM terminology) of the nodes. The value of node i is denoted as Ci (i=1, 
2, …, NV). The nodes are connected with directed and weighted edges. The directions of the 
edges represent the causal effect of nodes on each other. Take the FCM shown in Fig. 1 as an 
example. There is an edge from node 1 to node 2, which means that any change in the value of 
node 1 will cause a change in the value of node 2. The weight of the edge from node i to node j is 

denoted as wij[1,1]. A positive wij represents an excitatory relation from node i to node j, i.e., 
an increase (decrease) in Ci will cause an increase (decrease) in Cj, while a negative wij

represents an inhibitory relation, i.e., an increase (decrease) in Ci will cause a decrease (increase) 
in Cj. The weight wij is 0 if there is no causal relation from node i to node j.

Fig. 1.  An example of a FCM and its equivalent weight matrix.

The dynamics of the node values in the FCMs is simulated by using the following equation:
V

( 1) ( )

1

N
t t

i ij i
i

C f w C



 
  

 
 (1)

where ( )t
iC  is the value of node i in iteration t, f(∙) is an activation function that is used to restrict 

the node values within the range of [0,1]. There are three widely-used activation functions: the 
signum function, the trivalent function, and the sigmoid function [61]. We use the sigmoid 
function in this paper because it has been used by a large number of studies on the application of 
FCMs and by most of the studies on FCM learning algorithms. Furthermore, two comparison 
studies have suggested that the sigmoid function is better than the other two activation functions 
in general [61, 62].

The sigmoid activation function is defined as follows:

0

1
( )

1 x
f x

e 


(2)

where λ0 is a parameter that determines the steepness of the sigmoid function at values around 0. 
Different λ0 value may work better for different problems. We propose to learn λ0 along with the 
weight matrix for real-world applications. However, for the simulated study based on data 
generated using FCM, λ0 is set to 5.0, which is the commonly used value in the literature [34, 
35].
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2.2   Fuzzy Cognitive Map Learning Algorithms
The traditional approach for constructing FCMs is to use expert knowledge. Several 

algorithms based on Hebbian, i.e., correlational learning, have been proposed to improve the 
accuracy of the expert-constructed FCM [3, 4, 45]. However, these algorithms are suitable 
mainly for refining the weights after an initial weight is determined by domain experts.

Data-driven FCM learning algorithms are capable of learning the weights without domain 
experts’ intervention. Instead of using unsupervised learning rules, these data-driven FCM 
learning algorithms use optimization algorithms to minimize the difference between reference 
data sequences and the simulated output data sequences. A number of optimization algorithms 
have been proposed to learn FCM weights, e.g., genetic algorithms [31, 32, 59], particle swarm 
optimization [37, 43], differential evolution [44, 63], simulated annealing [46, 49], ant colony 
optimization [35, 64], and gradient-based optimization algorithms [56]. These algorithms have 
been applied successfully to learn FCMs without domain experts’ intervention for a number of 
problems, such as time series prediction [65], engineering control problems [37], and 
classification problems [66-68]. These FCM learning methods mainly differ from each other in 
the choice of objective functions and optimization procedures.

2.2.1   Objective Functions
For simulation and time series prediction problems, the most widely-used objective function 

is defined as the difference between the observed data at time t+1 and the simulation results at 
time t+1 based on the observed data at time t [34, 35, 43]. The observed data and the simulation 
results are usually considered as points in a high-dimensional space. The difference between 
these points can be defined using the L1-norm, L2-norm, or L∞-norm. Based on a comparison 
study of these norms, it is reported that the L2-norm performs best for FCM learning problems 
[59]. Because the L2-norm is differentiable, it is also preferred for gradient-based FCM learning 
algorithms [56]. In this paper, we term the objective function described above the one-step 
simulation error because the FCM simulation is only performed for one time step.

A decomposed objective function has been proposed to improve the performance of the 
optimization algorithms based on the one-step simulation error [53]. Another objective function 
based on multi-step simulation error has also been proposed to improve the prediction accuracy 
of the FCM models [69].

For engineering control problems, the objective function is usually defined as the distance 
from the steady-state simulation results to the maximal or minimal acceptable values [43]. This 
objective function is used in control problems because the aim of a control system is to constrain 
the status variables within a given interval.

2.2.2   Optimization Algorithms
Several gradient-based approaches and a large number of meta-heuristic algorithms have 

been proposed to learn FCMs.
Gradient-based methods are usually designed for the L2-norm simulation error function. The 
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objective function is minimized starting from an initial solution. Because gradient-based methods 
are local optimization algorithms, a multi-start strategy or hybrid approaches can significantly 
improve their accuracy [52].

Meta-heuristic algorithms are widely used to learn FCMs. The advantages of these 
algorithms include their global optimization capability and their ability to optimize non-
differentiable objective functions. These algorithms use intelligent random operators to generate 
new candidate solutions. Some random operators emphasize the exploration of the whole 
solution space to search for better solutions, while others emphasize the exploitation of already 
explored regions in order to improve the current solutions. The algorithms find the best solution 
by iteratively applying these different operators. The balance between exploration and 
exploitation is considered to be the key factor that determines the effectiveness of the algorithms 
[70]. However, it is difficult to find a good balance through theoretical studies. Therefore, 
experimental studies are used to test if a specific algorithm is suitable for a particular problem.

It is difficult to determine which algorithm works best for FCM learning in general, because 
most experimental studies have been performed on small scale problems and in different 
application areas. Ghazanfari et al. [46] compared simulated annealing (SA) and a variant of 
RCGA with problem-specific operators, and the results suggested that RCGA has better 
performance on small-scale problems while SA performs better on relatively large-scale 
problems. However, the experiments were only performed on FCMs with fewer than 15 nodes. 
Based on a literature search, we have found that only RCGA and ACO have been applied to 
FCMs with more than 40 nodes [34, 35, 47, 53]. Petalas et al. [37] compared PSO, DE and 
RCGA on several FCM learning problems and the results suggested that PSO performs better 
than the other two algorithms. However, the comparison was performed on four FCMs with 
predefined structure, the maximal number of nodes was only 18 and the number of variables to 
be optimized was only 40, because of the predefined network structure. The scale of this problem 
is small compared to the other studies listed in Table I. These facts motivated us to perform a 
comprehensive comparison of learning algorithms on large-scale problems and on the particular 
application area proposed in this paper.

2.3   Gene Regulatory Networks
A GRN consists of a number of nodes and directed edges between the nodes. Every node 

represents a gene and the directed edges represent causal relations between the genes.
Fig. 2 shows an example of GRN, which is used to test the proposed algorithm in the 

following sections. It consists of eight genes involved in the DNA SOS repair pathway [71]. It 
can be used to analyze the activity of the genes. The expression of recA senses DNA damage 
(which is a complex process not shown in Fig. 2). When DNA damage happens, the product of 
recA, designated RecA, represses the expression of lexA. The gene lexA represses six 
downstream genes, including polB, umuD, uvrD, uvrA, uvrY, and ruvA. This means when lexA 
is repressed, these genes will be activated. They will further lead to other interactions to repair 
the DNA. This GRN, therefore, provides critical insight into how cells respond to DNA damage. 



Page 11 of 32

Acc
ep

te
d 

M
an

us
cr

ip
t

10

The major challenge in this type of analysis is to discover the GRNs based purely on observed 
gene expression data (time-series in this paper).

Fig. 2.  An example GRN from the E. coli SOS network.

As we show in the above simple analysis, the behavior of the cells can be explained by the 
high or low expression levels of different genes. In fact, the GRNs can be modeled using 
Boolean networks and Bayesian networks, which represent the expression levels by discrete 
status [23, 24, 26]. A more realistic model is to use ordinary differential equations, which 
represent continuous-valued interactions between the genes. However, the nonlinearity of the 
relationships requires the use of nonlinear ODEs, which are more difficult to infer accurately.

Fig. 3.  A GRN from the E. coli with 300 genes and 439 regulatory relations. It is one of the GRNs we use to test 
our algorithm.
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Furthermore, the GRNs often contain a large number of nodes, which may further increase 
the difficulty in constructing and interpreting the model. Fig. 3 shows an example of a GRN with 
300 genes (nodes) and 439 regulatory relations (edges). It is only a part of the even larger E. 
coli’s GRN, which contains more than 4000 genes. And the edges only represent the relations the 
scientists discovered so far. There may be more relations to be discovered in this GRN. It’s 
important to represent the GRNs in an appropriate abstraction level and develop an efficient 
algorithm to construct the models from data. In this paper, we propose a new way of representing 
GRNs by using FCMs and develop a new FCM learning algorithm to efficiently construct the 
FCM models.

3   PROPOSED APPROACH

As discussed in the previous sections, FCMs could be a better model for GRNs. However, 
most GRNs consist of too many genes to be constructed by the existing algorithms. In this 
section, we propose an algorithm that can learn FCMs with hundreds of nodes so that it can be 
applied to construct large GRNs.

The overview of the proposed approach is shown in Fig. 4. The proposed approach consists 
of two main components, e.g., (1) a decomposed problem formulation [53] with a sparseness 
penalty, and (2) a real-coded genetic algorithm (RCGA) with tournament selection [60], single 
point crossover and non-uniform mutation [72]. Furthermore, three other major meta-heuristic 
optimization algorithms, e.g., an ant colony optimization for real parameters [38], the canonical 
particle swarm optimization [40], and a differential evolution algorithm [39], are implemented 
under the same decomposed framework for the purposes of comparison.

In the following, we first introduce the decomposed problem formulation and then describe 
the proposed optimization algorithms.

Fig. 4.  The framework of the decomposed approach.

3.1   Problem Formulation
The proposed algorithm learns FCMs from time series. Besides the weights matrix, we 

propose to learn the λ0 in the transfer function for every node as well. The objective of the 
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algorithm is to find an optimal FCM that can generate time series as similar to the observed 
(reference) time series as possible. A sparseness penalty is also included in the objective function 
because the connections among concepts in real-world applications, including GRNs, are sparse 
[34, 73]. The objective function before decomposition is:

 
T V

V

S

2

S
2 1 ,V T S
1
1

1 ˆ( , ) ( , )
( 1) n n ij

t N i j N
n N
s N

E C s t C s t p w
N N N    

 
 

  
   (3)

where NV is the number of nodes in the FCM, NS is the number of time series, NT is the number 
of time points in every time series, pS is the sparseness penalty factor, Cn(s,t) is the observed data 

for node n in time series s at time point t, ˆ ( , )nC s t  is the simulation result for node n in time series 

s at time point t defined as follows.
V

1

ˆ ( , ) ( , 1)
N

n n in n
i

C s t f w C s t


 
  

 
 (4)

where fn(∙) is the activation function for node n:
1

( )
1 nn x

f x
e 


(5)

where λn is the sigmoid parameter for node n. Different parameter values are used for each node 
to model differences in their sensitivity to changes in their inputs.

The calculation of ˆ ( , )nC s t  only depends on λn and the n-th column of the weight matrix Wn as 

defined in the following.

N

T

1 2 ,, ,...,n n n N nw w w   W (6)

Therefore the objective function E can be formulated as the summation of NN error terms En:

 
S NT 2

S
2 1 1T S

1 ˆ( , ) ( , )
( 1)

N NN

n n n in
t s i

E C s t C s t p w
N N   

  
   (7)

The optimization algorithms are used to optimize λn and Wn separately for every n from 1 to 
NN. The final result is obtained by directly concatenating the individual results together:

V1 2, ,..., N   W W W W (8)

V1 2, ,..., N     λ (9)

Based on this decomposed approach, the number of variables to be optimized in every single 
optimization process is reduced from NV(NV+1) to NV+1. This is one of the main factors that 
enable us to learn large scale FCMs.

3.2   Optimization Algorithms
Since the decomposed approach applies the optimization algorithm separately for every node 

n, the process is described only for one node in this section.
The pseudo-code for RCGAD is listed in Fig. 5. The major steps in RCGAD are described in 

the following.
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Algorithm 1: Real-coded genetic algorithm for one node
Input: observed time series.
Output: the best weights for the incoming edges of the current 
node and the parameter λn for the current node.
Steps:
Initialize the population;
Evaluate current population;
while Maximum number of iteration is not reached do

for id = 1 to population size, stepsize = 2 do
Select two individuals from the current population
if a randomly generated number < crossover rate

Apply crossover operator to the selected individuals and 
insert the two new individuals into the new population;

else
Directly copy the selected individuals into the new 
population;

end if
Mutate the two new individuals;

end for
Evaluate the new population;
Set the new population as the current population;

end while
Report the results

Fig. 5.  Pseudo-code for RCGAD

3.2.1   Initialization of the Population
A population of solutions is generated randomly within the variable boundaries according to 

uniform distribution. In RCGA, the j-th solution is denoted as

V V,1 ,2 , 1 1 2 ,, ,..., , ,..., ,j j j j N n n N n nx x x w w w        x (10)

where n is the current node the RCGAD is optimizing for.
The interval for the weights are [-1,1]. The interval for the parameter λn is [λmin, λmax], where 

λmin and λmax are parameters. The choice of these parameters depends on the datasets and the 
purpose of the experiments. It is described in Section IV.

3.2.2   Evaluating the Population
The weights and λn for the current node are first assigned based on (10). Equation (7) is then 

used to calculate the objective function for every solution in the population. The best solution is 
also identified in this step.

3.2.3   Selection
Tournament selection [60] is used in RCGAD. Usually, k individual solutions are randomly 

chosen from the population. The one with the smaller objective function value is selected to 
perform the subsequent operation. In this paper, we choose k=2 based on experiment results with 
different k values.
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3.2.4   Crossover 
A single-point crossover is used in the proposed algorithm [72]. The crossover location l is 

chosen randomly. The two selected individual solutions x1 and x2 can be recombined into two 
new individuals as follows:

V

(new)
1 1,1 1, 2, 1 2, 1,..., , ,...,l l Nx x x x    x (11)

V

(new)
2 2,1 2, 1, 1 1, 1,..., , ,...,l l Nx x x x    x (12)

3.2.5   Mutation 
A non-uniform mutation is used in the proposed algorithm. Every individual is subjected to 

mutation. For any specific individual solution xm, every element in xm has a probability pm of 
being mutated. The following equation is used to generate a new value for any element that is 
selected for mutation.

 
 

, max, ,( )
,

, , min,

, 0.5

, 0.5

m i i m inew
m i

m i m i i

x x x r
x

x x x r





     
   

(13)

where r is a random number in the range of [0,1], i is the index of the element that is selected for 
mutation, xmax,i and xmin,i are the upper and lower boundaries of the i-th element, δ is defined as 
follows.

 iter maxiter1
21

bn nr   (14)

where r2 is a newly generated random number in range [0,1], niter is the current number of 
iteration, nmaxiter is the maximum number of iteration, b is a parameter for the mutation.

4   EXPERIMENTAL DESIGN

To demonstrate the capability of the proposed FCM learning algorithm, we test the 
algorithms on several datasets ranging from simulated data to real-world observation data. The 
overall experimental steps are shown in Fig. 6. In this section, we describe the datasets used to 
test the algorithms, present the performance measures and lastly discuss the parameter settings 
for the experiments.
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Fig. 6.  An overview of the experimental design.

4.1   Datasets
Three types of data are used to test the FCM learning algorithms as summarized in Table II.

TABLE II
SUMMARY OF DATASETS

Data Type #Nets # Nodes #Edges Map Density Source of Network Structure Data Length 1

FCM-
simulated

5 10 25, 26, 25, 23, 
22 2

22%-26% DREAM4: 2 E. coli GRNs, 3 
yeast GRNs

1×10, 5×10, 
20×10

FCM-
simulated

5 50 112, 132, 127, 
210, 223 2

4.5%-8.9% DREAM3: 2 E. coli GRNs, 3 
yeast GRNs 3

1×10, 5×10, 
20×10

FCM-
simulated

5 100 276, 349, 295, 
311, 293 2

2.8%-3.5% DREAM4: 2 E. coli GRNs, 3 
yeast GRNs

1×10, 5×10, 
20×10

In silico 5 10 15, 16, 15, 13, 
12

12%-16% DREAM4: 2 E. coli GRNs, 3 
yeast GRNs

5×11, 20×11 4

In silico 5 100 176, 249, 195, 
211, 193

1.8%-2.5% DREAM4: 2 E. coli GRNs, 3 
yeast GRNs

10×11

In silico 1 200 265 0.7% E. coli GRN, extracted using 
GeneNetWeaver

10×11

In silico 1 300 439 0.5% E. coli GRN, extracted using 
GeneNetWeaver

20×11

In vivo 1 8 8 12.5% E. coli SOS network 4×49
1 Data length is presented in the form of “number of time series × number of time points per time series.”
2 Self-cycles are added to these networks. Therefore the number of edges is more than their in silico counterparts.
3 50-node networks from DREAM3 are used to generate time series, because 50-node networks are not available 

in DREAM4.
4 The 5×11 time series come from the DREAM4; the 20×11 time series are simulated using GeneNetWeaver 

based on network structures in DREAM4.

We designed the FCM-simulated datasets to test whether the FCM learning algorithm is able 
to discover the true model that generated the time series. In order to reflect real-world scenarios, 
the directions of influence among genes in the FCMs correspond to the actual directions of 
influence in the real gene regulatory networks (GRNs) according to the DREAM3 dataset [74, 
75]. However, the weight values for the GRN connections are not known, and the weights for the 
target FCMs are generated randomly using a uniform distribution within the range of 

   1, 0.05 0.05,1   . The values between 0.05 and 0.05 are not used, because the weights are 

too small to cause enough variation in the values of the other nodes. A similar method for 
generating random weights was also used in several recent studies [34, 35]. The initial states for 
every node are also generated at random. The time series used for training are obtained by 
simulating the target networks using Eq. (1).

In silico datasets [76] are used to test the performance of the FCMs on GRN inference 
problems. It is realistic simulation data based on stochastic differential equations using the 
GeneNetWeaver software [77]. The network structures are extracted from known GRNs. The 
simulation model takes two different types of noise into consideration: gene transcription noise 
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and experimental noise. Compared to FCM-simulated data, the in silico datasets are generated 
based on more realistic simulations and better predict the potential performance of GRN 
inference algorithms on real data. However, in contrast to real data from unknown GRNs, the 
structures of the GRNs for the in silico datasets are known. For most real gene expression data 
from real GRNs, especially the large ones, there are many unstudied connections among the 
genes, making the ground truth unknowable. Therefore, they are not suitable for comparing 
different algorithms.

The in silico datasets used in this paper come from two sources. The 10-node networks with 
5×11 time series and the 100-node networks with 10×11 time series come from an annual 
international competition named the Dialogue for Reverse Engineering Assessments and 
Methods (DREAM). The simulation is performed by the organizer of DREAM. We use data 
from DREAM4, which was held in 2010, because a paper compared several GRN inference 
algorithms on DREAM4 and it allows us to compare with these algorithms on these datasets. 
DREAM4 includes several types of data but only the time series data is used in this paper.

Another set of in silico datasets is generated by us using the GeneNetWeaver software. The 
10-node networks with 20×11 time series was used to test the algorithms’ performance on 
datasets with large data volume. The 200-node and 300-node networks were used to test the 
performance of the algorithms on large networks.

The in vivo dataset contains gene expression data measured from the E. coli SOS network 
[71]. It represents a small size GRN that is well studied. Therefore the true network structure is 
known. Because the gene expression values change vary fast, we compressed the range of the 
values from [0,1] to [0.25, 0.75]. In this way, the difference between gene expression values at 
two adjacent time points is smaller.

4.2   Performance Measures
Different performance measures are used for different datasets. The objective function, as a 

measure of similarity between the observed time series and the simulation results, is used in all 
datasets. For FCM-simulated datasets, we compared the performance of different algorithms 
based on model error, although area under the receiver operating characteristics (AUC) and area 
under the precision recall curve (AUPR) are also calculated. This is because model error is more 
sensitive to small differences between the true weight matrix and the inferred weight matrix. For 
in silico and in vivo datasets, AUC and AUPR are used. Model error is not used because the true 
weight matrix is not available. The two types of performance measures are defined below:

4.2.1   Performance Based on Weight Errors (Model Error)
Model error is the difference between the true weight matrix and the weight matrix of the 

FCM model learned from data. It is defined as follows.
V V

model 2
1 1V

1
ˆ

N N

ij ij
i j

E w w
N  

  (15)

where ˆ ijw  is the learned weight from node i to node j.
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4.2.2   Performance Based on Binary Networks
Two performance measures based on binary networks are used, i.e., AUC and AUPR [78]. In 

biomedical studies, the inferred GRNs are usually represented as binary networks so that analysis 
can be performed to determine the biological meanings of the plausible relations among the 
genes. The accuracy of the binary network changes as the threshold for generating the binary 
network from the weight matrix is changed. For the assessment of GRN inference algorithms, we 
can compare the learned binary networks to the true binary networks. There are four types of 
outcomes in this comparison: true positive (an edge that exists in the true network and is 
correctly identified as an existing edge in the learned network), false positive (an edge that does 
not exist in the true network but is not correctly identified), true negative (an edge that does not 
exist and is correctly identified), and false negative (an edge that exists but is not correctly 
identified). True positive rate, false positive rate, recall, and precision are defined based on these 
four types of outcomes as follows:

 TP TP FNTrue Positive Rate Recall N N N   (16)

 FP TN FPFalse Positive Rate N N N  (17)

 TP TP FPPrecision N N N  (18)

where NTP, NFP, NTN, NFN are number of true positive, false positive, true negative and false 
negative results respectively.

4.3   Parameter Settings
The parameters for the algorithms are chosen based on experiment results on random 

networks generated using the same method as described in [35]. In general, grid searches with a 
step size of 0.1 from 0.1 to 0.9 are performed to determine the best parameter combinations. For 
the parameters that are outside the range of 0 to 1, they are normalized before parameter search. 
There are three parameters in RCGAD: the crossover rate and mutation rate are set to 0.6 and 0.3, 
respectively based on a grid search; and the exponential parameter for the mutation equation is 
set to 4 based on values suggested in the literature [72]. The parameters for ACOR are set to the 
same values as in [53]. The parameters for PSO are set to the values used in canonical PSO [40]. 
Two parameters for DE are determined based on grid search, i.e., the crossover rate and the scale 
factor. They are set to 0.8 and 0.5, respectively. The population sizes in all four algorithms are 
directly set to 100 because this value is used in many studies on these algorithms. The maximal 
number of iterations is 15000. The same value is used in [53] and it is sufficient for the 
algorithms to converge (based on experimental observations).

The sparseness penalty is set to 0.2 for the large-scale in silico datasets with more than 100 
(inclusive) nodes. It is set to 0 for the other small-scale in silico and in vivo datasets.
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TABLE III
COMPARISON OF MODEL ERRORS FOR FCM-SIMULATED DATASETS WITHOUT USING SPARSE PENALTY

#Nodes 10 10 10 10 10 50 50 50 50 50 100 100 100 100 100
Baseline 0.517 0.541 0.549 0.538 0.542 0.503 0.504 0.503 0.503 0.503 0.507 0.507 0.509 0.511 0.512

1 Time Series × 10 Time Points
ACOR 0.208 0.298 0.216 0.290 0.213 0.345 0.354 0.344 0.353 0.351 0.355 0.357 0.356 0.356 0.356

DE 0.281 0.393 0.337 0.408 0.315 0.354 0.354 0.359 0.370 0.366 0.347 0.345 0.344 0.343 0.342
PSO 0.431 0.553 0.468 0.569 0.491 0.616 0.625 0.611 0.613 0.611 0.621 0.625 0.621 0.621 0.624

RCGAD 0.147 0.259 0.157 0.200 0.164 0.079 0.082 0.094 0.113 0.108 0.067 0.066 0.059 0.052 0.057
5 Time Series × 10 Time Points

ACOR 0.026 0.187 0.072 0.157 0.115 0.324 0.339 0.328 0.335 0.330 0.355 0.358 0.357 0.356 0.355
DE 5E-5 0.200 0.043 0.128 0.125 0.355 0.360 0.354 0.362 0.360 0.345 0.348 0.348 0.352 0.350
PSO 0.216 0.430 0.348 0.435 0.351 0.592 0.584 0.590 0.577 0.573 0.596 0.596 0.588 0.583 0.587

RCGAD 0.043 0.161 0.093 0.144 0.116 0.063 0.068 0.068 0.089 0.090 0.048 0.052 0.049 0.048 0.049
20 Time Series × 10 Time Points

ACOR 5E-6 0.030 0.002 2E-4 0.004 0.246 0.285 0.267 0.265 0.240 0.348 0.350 0.350 0.345 0.343
DE 1E-6 0.005 2E-6 4E-6 4E-6 0.266 0.313 0.286 0.285 0.259 0.338 0.341 0.342 0.341 0.333
PSO 0.088 0.207 0.116 0.159 0.136 0.532 0.534 0.527 0.528 0.523 0.555 0.555 0.553 0.552 0.547

RCGAD 0.001 0.068 0.012 0.023 0.025 0.056 0.062 0.061 0.079 0.078 0.045 0.049 0.046 0.046 0.046

The best result in each group is shown in bold.

TABLE IV
COMPARISON OF AUCS FOR FCM-SIMULATED DATASETS WITHOUT USING SPARSE PENALTY

#Nodes 10 10 10 10 10 50 50 50 50 50 100 100 100 100 100
Baseline 0.524 0.530 0.482 0.515 0.498 0.500 0.491 0.490 0.495 0.503 0.503 0.494 0.494 0.493 0.504

1 Time Series × 10 Time Points
ACOR 0.744 0.617 0.704 0.619 0.716 0.518 0.525 0.507 0.523 0.520 0.511 0.510 0.505 0.502 0.514

DE 0.750 0.654 0.607 0.601 0.675 0.522 0.515 0.511 0.512 0.535 0.515 0.503 0.510 0.499 0.508
PSO 0.560 0.551 0.517 0.530 0.544 0.503 0.514 0.500 0.508 0.500 0.499 0.506 0.490 0.500 0.503

RCGAD 0.766 0.665 0.780 0.715 0.748 0.562 0.551 0.618 0.596 0.589 0.552 0.545 0.591 0.565 0.542
5 Time Series × 10 Time Points

ACOR 0.993 0.763 0.923 0.872 0.909 0.541 0.520 0.536 0.553 0.562 0.518 0.516 0.514 0.530 0.532
DE 1.000 0.825 0.953 0.911 0.885 0.544 0.534 0.554 0.570 0.569 0.524 0.523 0.531 0.529 0.515
PSO 0.797 0.578 0.646 0.583 0.677 0.529 0.504 0.513 0.493 0.510 0.500 0.500 0.495 0.500 0.497

RCGAD 0.990 0.705 0.900 0.932 0.900 0.677 0.659 0.721 0.707 0.706 0.601 0.611 0.679 0.670 0.671
20 Time Series × 10 Time Points

ACOR 1.000 0.991 1.000 1.000 0.999 0.693 0.642 0.668 0.681 0.725 0.574 0.582 0.598 0.608 0.618
DE 1.000 0.998 1.000 1.000 1.000 0.688 0.648 0.684 0.697 0.726 0.569 0.571 0.603 0.575 0.587
PSO 0.942 0.798 0.887 0.898 0.889 0.535 0.498 0.520 0.510 0.512 0.500 0.497 0.501 0.514 0.510

RCGAD 1.000 0.974 1.000 0.999 0.999 0.886 0.860 0.866 0.860 0.875 0.826 0.786 0.871 0.828 0.856

The best result in each group is shown in bold.

4   RESULTS AND DISCUSSION
The datasets described above were used to systematically compare the different algorithms. 

In the following, the performance comparisons on the three types of datasets are discussed first, 
followed by a discussion of the applicability of FCMs to reverse engineering problems, the 
applicability of FCMs to large networks, and performance comparison across different datasets.

4.1   FCM-simulated Datasets
FCM-simulated datasets are used to demonstrate that the proposed FCM learning algorithm 

can reverse engineer the weights for the FCM models. Model errors, AUCs and AUPRs are 
calculated for the FCM-simulated datasets. Although the AUPRs and the AUCs are different in 
values, the trends are very similar. Therefore the AUPRs are not shown here. The model errors 
and AUCs are shown in Table III and Table IV, respectively. The standard deviations for most 
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of the average values are one order of magnitude smaller and they are not shown in the tables.
It is observed that RCGAD outperforms the other algorithms for most of the experiments and 

PSO performs significantly worse than the other algorithms. However, an interesting observation 
is that DE performs best on all five 10-node networks when 20 time series are used in the 
learning process, and DE performs best on only three out of five 10-node networks when 5 time 
series are used. When only 1 time series is used, DE performs consistently and significantly 
worse than RCGAD. Similar trends also exist in AUCs, but the difference between different 
algorithms is smaller than that in model errors. Based on these observations, we conclude that 
RCGAD performs consistently well; however, DE performs better if there is a large volume of 
data available and the scale of the FCM is small.

Another observation is that the model errors for RCGAD decrease when the scale of the FCM 
increases. To explain this observation, we calculated the baseline model error for every network. 
It is calculated by generating random weights and then evaluating the accuracy of the FCMs. For 

FCMs that are sparser, there are more zero weights. Because the weights range from 1 to 1, the 
existence of more zero weights results in smaller expected errors. The 50-node networks in the 
FCM-simulated data are sparser than the 10-node networks, and the 100-node networks are 
sparser than the 50-node networks. Therefore the model errors decrease slightly along with the 
decrease of the baseline model error. For the three algorithms other than RCGAD, the model 
errors increase as the FCM scales increase. This is because these three algorithms are not as 
scalable as RCGAD and the model errors increase faster than the decrease of baseline model 
error. There is also another reason that may lead to the decrease in model errors for RCGAD. The 
single-point crossover operator is capable of preserving large solution segments. Thus, 
continuous zero weights in the solutions are better preserved once they are found in RCGAD.

Several other studies have also applied RCGA to learn FCMs [32, 34, 47]. It is difficult to 
directly compare RCGAD with the other RCGA variants in the literature, because different 
datasets were used to test the algorithms. Typically, the studies used randomly generated 
network structures and the experiments were only performed five times with a different network 
structure on each trial. This would be expected to result in a large variation in the performance 
measures. However, several 10-node networks used in [34] have a very similar map density (the 
ratio of the number of existing edges and the maximum possible number of edges) as the ones 
used in this paper and we can compare these results. The proposed RCGAD in this paper is tested 
on five 10-node networks with map densities ranging from 22% to 26%; while the RCGA in [34]
was tested on five random 10-node networks with a map density of 20% and another five random 
10-node networks with a map density of 40%. The model errors for RCGA on FCMs with 20% 
and 40% of map densities are 0.398 and 0.385 respectively; while the average model error for the 
5 networks using RCGAD is 0.185, and the largest model error is only 0.259. The advantage of 
RCGAD over RCGA lies mainly in the decomposed framework. As we have compared in a 
previous study [53], ACOR’s performance also improves significantly if a decomposed approach 
is used. Other factors may also contribute to the higher performance, including the combination 
of the specific genetic operators used in RCGAD.
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TABLE V
COMPARISON OF AUCS AND AUPRS FOR IN SILICO DATASETS FROM DREAM4

#Nodes 10 10 10 10 10 100 100 100 100 100
ACOR 0.816±0.003 0.628±0.001 0.588±0.001 0.720±0.004 0.853±0.004 0.728±0.008 0.642±0.013 0.699±0.007 0.681±0.009 0.730±0.007

DE 0.819±0.010 0.627±0.003 0.588±0.008 0.717±0.009 0.855±0.005 0.600±0.020 0.540±0.016 0.611±0.022 0.561±0.013 0.598±0.018
RCGAD 0.803±0.002 0.639±0.001 0.598±0.002 0.739±0.001 0.884±0.001 0.755±0.009 0.656±0.007 0.720±0.007 0.687±0.005 0.738±0.008
DBN11 0.73 0.64 0.68 0.85 0.92 0.68 0.64 0.68 0.66 0.72
DBN2 1 0.73 0.66 0.77 0.80 0.84 0.59 0.56 0.59 0.67 0.71

A
U

C

ODE 1 0.62 0.63 0.58 0.63 0.68 0.55 0.55 0.6 0.54 0.59
ACOR 0.481±0.033 0.426±0.009 0.234±0.021 0.493±0.045 0.596±0.082 0.186±0.002 0.117±0.001 0.160±0.003 0.143±0.001 0.170±0.001

DE 0.490±0.038 0.419±0.009 0.246±0.031 0.490±0.050 0.600±0.086 0.037±0.008 0.032±0.003 0.074±0.015 0.036±0.007 0.042±0.007
RCGAD 0.481±0.003 0.430±0.005 0.267±0.023 0.536±0.012 0.766±0.010 0.186±0.004 0.128±0.003 0.204±0.005 0.149±0.003 0.190±0.004
DBN1 1 0.37 0.34 0.45 0.69 0.77 0.11 0.10 0.13 0.10 0.11
DBN2 1 0.38 0.41 0.49 0.46 0.64 0.08 0.05 0.11 0.10 0.09

A
U

PR

ODE 1 0.27 0.32 0.21 0.23 0.25 0.02 0.03 0.03 0.02 0.03

The results are presented in the format of average value ± standard deviation. The standard deviations for the 
deterministic algorithms, e.g., DBN1, DBN2, and ODE are not shown. The best results for FCM algorithms and the 
best results for the deterministic algorithms are both shown in bold. The best results for all the algorithms are shaded 
in gray.

1 The results for DBN1, DBN2 and ODE are reported in [79]. DBN1 is a dynamic Bayesian network approach 
without hidden nodes. DBN2 is a dynamic Bayesian network approach with hidden nodes.

4.2   In Silico Datasets
While the results from the previous section suggest the proposed algorithm can reverse 

engineer the weights in the FCMs from simulated data accurately, we further test the algorithms 
on more realistic simulation data generated from in silico models and compare them with other 
GRN inference algorithms.

Table V reports the performance measures, including AUCs and AUPRs, for FCM models 
constructed using three different learning algorithms, two DBN variants, and an ODE model 
[79]. PSO is not evaluated on the in silico datasets, because the performance of PSO is 
significantly worse than the other three algorithms on the FCM-simulated datasets.

RCGAD performs better than ACOR and DE on 9 out of 10 networks. Comparing the results 
based on FCM and RCGAD to the two DBN variants and the ODE, RCGAD performs better on 
all five 100-node networks and only one 10-node network. In general, FCM is applicable to the 
GRN inference problem and FCM in combination with RCGAD based learning algorithm is more 
scalable than other approaches for inferring large-scale networks.

Because both FCM and ODE use weighted sum to model the dependence of the gene 
expression levels in two adjacent time points, it is interesting to compare the accuracies of these 
two models. It is observed that the FCMs constructed by RCGAD are more accurate than the 
ODE models for all ten networks. The FCMs constructed by ACOR and DE are also more 
accurate than the ODE models for most of the networks. The performance difference between 
FCM and ODE is mainly due to the use of the sigmoid activation function, because the activation 
function is the main difference between the two types of models. In FCMs, the sigmoid 
activation function is used for every node to map the weighted sum into the range [0,1], whereas 
in ODEs, the weighted sum is directly used as the output of every node. A possible explanation 
for the benefit of using sigmoid function is that the sigmoid function models the saturation effect 
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that often exists in real-world scenarios [80], while the nonlinearities it introduces in the 
optimization process are overcome by the general strength of RCGAD.

4.3   In vivo Datasets
Although realistic simulation dataset provides a good evaluation of the FCM learning 

algorithms, we further demonstrate the performance of the algorithms on the real data from the 
E. coli 8-gene SOS network. The results are compared in Fig. 7. Three FCM learning algorithms, 
including ACOR, DE and RCGAD, perform better than the other algorithms, including LP, 
LASSO, PCA-PCC and PCA-CMI [81]. These results suggest that FCM is a better model than 
the other four models for the inference of gene regulatory networks. It is observed that DE 
slightly outperforms RCGAD in this dataset.

Fig. 7. The performance comparison of gene regulatory network inference algorithms on the E. coli 8-gene SOS 
network. The results for LP, LASSO, PCA-PCC and PCA-CMI come from [81].

4.4   Applicability of the Proposed Algorithm to Large Networks
To test the applicability of the proposed algorithm on large networks, several GRNs with 200 

and 300 nodes were extracted from the known network of E. coli using GeneNetWeaver. The 
results are shown in Table VI. The AUCs for the 300-node networks are around 0.7, which is 
similar to the AUCs for the 100-node networks as shown in Table VI. The AUPRs are lower 
than the results for the FCM learning algorithms in Table VI; however, the AUPRs for RCGAD

on 200-node and 300-node problems are higher than the AUPRs for ODE, a widely used method 
for GRN inference, on smaller problems with only 100 nodes.

TABLE VI
COMPARISON OF THE FCM LEARNING ALGORITHMS ON LARGE NETWORKS

200 300#Nodes
AUC AUPR AUC AUPR

ACOR 0.699±0.003 0.078±0.001 0.702±0.005 0.052±0.002
DE 0.538±0.022 0.009±0.001 0.531±0.011 0.006±0.001

RCGAD 0.685±0.007 0.038±0.002 0.749±0.005 0.057±0.003

The results are presented in the form of average value ± standard deviation.
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4.5   Comparing the FCM Learning Algorithms across Datasets
From the experimental results on different datasets, we observe that the performance of 

different FCM learning algorithms varies across different datasets. In general, RCGAD performs 
better than the other FCM learning algorithms on the problems with a large number of nodes, 
small data volume and high noise level. This observation is analyzed in the following.

4.5.1   Performance Comparison on Large Scale Problems
Based on the results in Table III, Table IV and Table V, RCGAD performs better than the 

other FCM learning algorithms on 50-node and 100-node FCM learning problems. We may 
expect that RCGAD also performs best on the 200-node and 300-node problems; however,
RCGAD performs worse than the other algorithms on the 200-node problem as reported in Table 
VI. The possible cause of this observation is that the 200-node and 300-node networks used in 
this paper are much sparser than the 100-node networks. The map densities for the 200-node and 
300-node networks are smaller than 0.7% and the map densities for the 100-node networks are 
larger than 1.8%. For highly sparse networks, there are very few cycles and therefore the 
interaction patterns for the nodes may be simpler. The benefit of RCGAD is not fully utilized. 
However, comparing the results for the 200-node and 300-node problems, RCGAD still performs 
better than the other algorithms on the larger network. To conclude, RCGAD performs better on 
large problems.

4.5.2   Performance Comparison on Small Scale Problems
For the small scale problems (≤10 nodes), RCGAD performs better on the datasets with small 

data volume and high noise level. To better demonstrate this observation, a summary of the best 
performing FCM learning algorithms for different small scale datasets is provided in Table VII.
The data volumes in the table are sorted from small to large. The FCM-simulated datasets with 5 
time series × 10 time points and the in silico datasets with 5 time series × 11 time points are 
considered as having similar volume of data.

TABLE VII
THE BEST PERFORMED ALGORITHMS FOR SMALL SCALE DATASETS

Noise Level (Dataset)
Data Volume None

(FCM-simulated)
Low

(in silico)
High

(in silico and in vivo) 2

1×10 RCGAD - -
5×10/5×11 1 DE/ACOR - RCGAD

20×10/20×11 1 DE/ACOR RCGAD RCGAD

5×40 - - RCGAD

5×49 - - DE/ACOR

This table is based on results on 10-node networks (the FCM-simulated datasets and the in silico datasets) and 
8-node networks (the in vivo dataset).

1 Data volume for the FCM-simulated datasets is 5×10 or 20×10. Data volume for the in silico datasets is 5×11 
or 20×11.

2 The last two results with data volumes of 5×40 and 5×49 are obtained on the in vivo datasets. The other two 
results are obtained on the in silico datasets.
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The noise levels of the datasets are determined based on the data generation methods and 
they can also be approximately observed from the time series examples as shown in Fig. 8. There 
is no noise in the FCM-simulated data, because we do not include any noise in the equations 
used for simulation. It is observed that the lines are smooth in Fig. 8(a). The noise level for the E. 
coli SOS network data is considered as high because it is recorded in vivo, which contains at 
least two types of noises, i.e., intrinsic gene regulation noise and experimental (measurement) 
noise. It is observed from Fig. 8(b) that there are some fluctuations starting approximately from 
the 20-th time point. The noise level for one in silico dataset (the 10-node network with 20×11 
time series) is considered as low because this dataset is generated using GeneNetWeaver without 
incorporating experiment noise. The noise level for the other in silico datasets is considered as 
high because it is generated using GeneNetWeaver with both types of noises. The different noise 
levels of the in silico datasets are illustrated in Fig. 8(c) – Fig. 8(e). Comparing with the data 
without noise shown in Fig. 8(c), the two noisy data contains large variations that is not 
generated by the underlying gene regulation dynamics. These variations pose a significant 
problem for the network inference algorithms. 

It is observed from Table VII that RCGAD outperforms the other FCM learning algorithms 
on datasets with small data volume or high noise levels.

TABLE VIII
COMPARISON OF THE AUCS OF THE FCM LEARNING ALGORITHMS ON THE E. COLI SOS NETWORK DATASETS WITH 

DIFFERENT DATA VOLUMES

Data Volume ACOR DE PSO RCGAD Diff 1

5×20 0.869±0.003 0.873±0.006 0.667±0.079 0.892±0.002 0.019
5×30 0.911±0.006 0.916±0.007 0.680±0.118 0.925±0.002 0.009
5×40 0.944±0.008 0.952±0.009 0.757±0.082 0.955±0.003 0.003
5×49 0.916±0.006 0.922±0.008 0.676±0.114 0.907±0.004 −0.015

The best AUCs for each dataset are shaded in gray and the second place AUCs are shown in bold.
1 Diff is defined as the AUC of RCGAD subtracted by the best AUC of the other three algorithms.

To further demonstrate the advantage of RCGAD on datasets with small data volume, we 
generate several different datasets by removing data for some of the time points from the in vivo 
E. coli SOS network dataset. The performance of the FCM learning algorithms on the datasets 
with different volumes is shown in Table VIII. It is observed that RCGAD outperforms the other 
algorithms when the number of time points is smaller than 40; however, the performance 
difference between RCGAD and the other algorithm decreases as the number of time points 
increases. The performance of RCGAD is worse than ACOR and DE when the number of time 
points is 49.
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Fig. 8. Example time series from different datasets. The datasets contains 8 to 10 time series each. The time series 
for each dataset are plotted using different shades of gray and different markers in one subplot. The noise levels in 
the datasets can be identified qualitatively by visual examination. Especially, since subplots (c) to (e) are generated 

using the same network, they would have been identical if there was no noise.
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Fig. 9. Scatter plots of simulation errors vs. model errors for the four FCM learning algorithms on FCM-simulated 
data with five time series. The position of every circle in the subplots represents the simulation error and the model 
error of the best solution in a different iteration of the optimization algorithm. The different shades of gray represent 

time step from light to dark. By looking at the circles from light gray to dark gray, we may observe how the two 
error measures evolve as the optimization algorithms run.

4.6   Applicability of FCMs to Causal Network Reverse Engineering
In this paper, we have demonstrated the application of FCMs to a causal network reverse 

engineering problem, e.g., the inference of gene regulatory networks. Similar to the algorithms 
for other reverse engineering problems [82], we optimize the simulation error and expect that the 
model error will be minimized in this process. The key to the success of this approach is that, for 
this application, simulation errors are highly correlated with model errors. However, to the best 
of our knowledge, there is no previous study demonstrating for FCM learning problems.
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To evaluate the relation between simulation errors and model errors, the best solutions 
generated in all trial of the optimization algorithm are recorded. The relation between the 
simulation errors and the model errors is shown in Fig. 9. It is observed that the two error 
measures are approximately correlated. However, improvement in simulation error does not 
necessarily lead to an improvement in model error. The most obvious example can be found in 
Fig. 9(b). It shows that when the simulation error drops below 0.01, the model error starts to 
increase; while for the rest of the simulation error range, model error decreases as simulation 
error decreases. These observations suggest that simulation error is a good, although not perfect, 
proxy of model error.

Because we can calculate simulation errors for FCM models generated by different 
algorithms, one may ask whether it is possible to choose the best model from those generated by 
these different algorithms based on simulation errors. From the results shown in Fig. 9, the 
answer is negative. It is observed that, for example, the simulation errors for the model generated 
by DE in the last several trials are much lower than the ones generated by ACOR. If we choose 
the model based on simulation errors of these two algorithms, we may choose the results from 
DE, which has a higher model error for this dataset.

Different algorithms have different optimization trajectories as shown in Fig. 9. The subplots 
for RCGAD are much wider than ACOR and DE. It is possibly because RCGAD is able to search 
a wider solution space, which leads to a diverse range of model errors and simulation errors. The 
searching processes in ACOR and DE are more focused and therefore lead to a narrow 
distribution of the model errors and simulation errors. The difference in the solution diversity 
may explain differences in the scalability and robustness of the algorithms. For large scale and 
noisy datasets, RCGAD performs better because the candidate solutions generated by RCGAD are 
more diverse than ACOR and DE. It prevents the optimization process from becoming trapped in 
a local optimum. However, it wastes computational resources to explore a wider area of the 
solution space for datasets with fewer nodes and less noise. In this scenario, ACOR and DE are 
able to focus on a few prominent areas and therefore perform better than RCGAD.

Comparing the subplots for PSO in Fig. 9, it is observed that for the 50-node and 100-node 
FCM learning problems, the simulation error does not improve during the optimization process 
and model error increases; while for the 10-node problem, both the simulation error and the 
model error decrease slightly. This observation suggests that the PSO variant used in this paper is 
only suitable for small scale FCM learning problems.

5   CONCLUSION
Fuzzy cognitive maps (FCMs) have been applied to a wide variety of problems. However, 

there is no existing study on applying FCMs to reverse engineer causal networks. In this paper, 
we focus on developing FCM learning algorithms for the causal network reverse engineering 
problem. More specifically, we developed an algorithm to construct large gene regulatory 
networks (GRNs) from gene expression data. The contributions of this paper include:

(1) We explored a new application of FCM learning algorithms, e.g., the reverse engineering 
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of causal networks from observed time-series. An ideal network reverse engineering algorithm 
should be capable of optimizing model errors. However, the model errors are not available in the 
optimization process. In practice, we optimize simulation error instead. Our experiment results 
show that, for the cases studied in this research, there is a good correlation between simulation 
errors and model errors, which suggests that the approach we adopted may be broadly applicable.

(2) A new FCM learning algorithm is proposed to learn large scale FCMs. In most of the 
existing studies, the FCM learning algorithms are only applied to construct FCMs with less than 
40 nodes. In this paper, we proposed a new FCM learning algorithm based on a decomposed 
framework and a real-coded genetic algorithm (RCGA) with tournament selection, the single 
point crossover operator and the non-uniform mutation are proposed to learn FCMs. The 
experiments demonstrated that the proposed algorithm is able to learn large scale networks with 
up to 300 nodes.

(3) A comparison study is performed to demonstrate the advantage and disadvantage of the 
four optimization algorithms, e.g., the ant colony optimization for real parameters (ACOR), a 
differential evolution (DE) algorithm, the canonical particle swarm optimization (PSO), the 
RCGAD proposed in this paper. The experimental results suggest the proposed RCGAD

outperforms the other algorithms when the data volume is small, network scale is large, or the 
data has noise.

As this work is a first step towards constructing large scale causal networks, there is ample 
scope for future work in this area. Possible directions include improving the objective function to 
reduce the large number of equivalent FCMs, and improving the algorithms with problem-
specific operators. Furthermore, the proposed algorithm could be applied to larger gene 
regulatory networks that are less studied and provide new insight into the cell functions. Finally, 
the approach may also be applicable to other areas where networks need to be inferred from 
time-series data, e.g., in models of brain function and social networks.
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